Acyclic edge coloring conjecture is true on planar graphs without intersecting triangles
نویسندگان
چکیده
An acyclic edge coloring of a graph G is proper such that no bichromatic cycles are produced. The conjecture by Fiamčik (1978) and Alon, Sudakov Zaks (2001) states every simple with maximum degree Δ acyclically ( + 2 ) -colorable. Despite many milestones, the remains open even for planar graphs. In this paper, we confirm affirmatively on graphs without intersecting triangles. We do so first showing, discharging methods, triangles must have at least one six specified groups local structures, then proving recoloring certain edges in each structure induction number graph. • Consider long-standing coloring. Show triangles, holds true. Adapt methods to reduce structures only groups. Design re-coloring techniques group prove number.
منابع مشابه
Acyclic Edge coloring of Planar Graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a(G) ≤ ∆ + 2, where ∆ = ∆(G) denotes the maximum degree of the gra...
متن کاملAcyclic Edge Coloring of Triangle Free Planar Graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a(G) ≤ ∆ + 2, where ∆ = ∆(G) denotes the maximum degree of the gra...
متن کاملAcyclic edge coloring of planar graphs with Δ colors
An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that ∆(G) + 2 colors suffice for an acyclic edge coloring of every graph G [6]. The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is ∆+12 [2]. In this paper, we study simple planar graph...
متن کاملAcyclic edge coloring of graphs
An acyclic edge coloring of a graph G is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The acyclic chromatic index χa(G) of a graph G is the least number of colors needed in any acyclic edge coloring of G. Fiamčík (1978) conjectured that χa(G) ≤ ∆(G) + 2, where ∆(G) is the maximum degree of G...
متن کاملColoring planar graphs with triangles far apart
We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3-colorable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2021
ISSN: ['1879-2294', '0304-3975']
DOI: https://doi.org/10.1016/j.tcs.2021.06.017